Dynamic Analysis and Controls of Automatic Transmissions

AUTO 563

Shushan Bai
GM Powertrain
Know Each Other

- Your name, work experiences, academic background and etc.
- Your expectation to the course.
<table>
<thead>
<tr>
<th>Session</th>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan. 8</td>
<td>Introduction to the world of automatic transmissions
Static analysis of planetary gear trains
Torque ratio and speed ratio analysis using algebraic method, level diagram method and matrix method.</td>
</tr>
<tr>
<td>2</td>
<td>Jan. 15</td>
<td>Gear shift mechanics</td>
</tr>
<tr>
<td>3</td>
<td>Jan. 22</td>
<td>Simulation of dynamic systems in SIMULINK</td>
</tr>
<tr>
<td>4</td>
<td>Jan. 29</td>
<td>Dynamic modeling and analysis of planetary gear trains:
Dynamic modeling of simple planetary gear sets and planetary gear trains. Generic dual clutch model to simulate gear shifting.</td>
</tr>
<tr>
<td>5</td>
<td>Feb. 5</td>
<td>Hydraulic control systems and simulation models:
Proportional pressure control solenoid, pressure regulating valve, hydraulic actuator, pulse width modulated (PWM) solenoid, clutch control system, and overall hydraulic control system.</td>
</tr>
<tr>
<td>7</td>
<td>Feb. 19</td>
<td>Midterm preparation and final project kickoff</td>
</tr>
<tr>
<td>8</td>
<td>Feb. 26</td>
<td>Midterm exam</td>
</tr>
<tr>
<td>9</td>
<td>Mar. 5</td>
<td>Winter Break (no class).</td>
</tr>
<tr>
<td>10</td>
<td>Mar. 12</td>
<td>Presentation of final project proposal</td>
</tr>
<tr>
<td>11</td>
<td>Mar. 19</td>
<td>Shift scheduling system and integrated powertrain control:
Performance, drivability and fuel economy. Shift map based and AI based shift-scheduling system. Integrated powertrain control.</td>
</tr>
<tr>
<td>12</td>
<td>Mar. 26</td>
<td>Electronically controlled torque converter clutch:
Control strategies, stability and response, disturbance rejection. Friction launch control
Mechanization of friction launch clutches: DCT, MTA. Control strategies.</td>
</tr>
<tr>
<td>13</td>
<td>Apr. 2</td>
<td>Belt CVT ratio and torque capacity control</td>
</tr>
<tr>
<td>14</td>
<td>Apr. 9</td>
<td>Torsional vibration damper and centrifugal pendulum vibration absorber</td>
</tr>
<tr>
<td>15</td>
<td>Apr. 16</td>
<td>Dual clutch transmission (DCT) and controls</td>
</tr>
<tr>
<td>16</td>
<td>Apr. 23</td>
<td>Final project preparation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Presentation of final project.</td>
</tr>
</tbody>
</table>

Class Expectation: active involvements, learning through discussions
Grading Police:
2 home works before the midterm (25%)
Midterm (25%)
Final Project (50%)

Will consider curve the grade if necessary
• Matlab/Simulink is used throughout the course for modeling and simulation of transmissions and control systems.
• Matlab/Simulink is not a prerequisite, and there will be tutorial sessions.
• If you are not familiar with Matlab/Simulink, it is a plus if you do some self teachings before hand.

http://www.mathworks.com/academia/student_center/tutorials/
http://www.engin.umich.edu/class/ctms/
• No regular office hour. If necessary could meet by appointment.

• Feel free to email me if you need any help.
 ✓ sbai@umich.edu
 ✓ shushan.bai@gm.com
Final Project Essentials

- Group work is highly encouraged (3 to 4 members per group)
- Project has to be built off of topics and techniques introduced in the class.
- A list of suggested final projects will be provided, it is highly recommended to chose from the list.
- Professional work is expected
 - Project approval presentation and peer review
 - Written project report
 - Oral project presentation
 - Literature search
- Written report format (5-7 pages with references sited)
 - Abstract
 - Purpose
 - Literature search
 - Discussion
 - Physical system description
 - Control description
 - Approach to modeling
 - Model description
 - Simulation Results
 - Major areas of discovery
 - Conclusion/Recommendations
- Presentation 15 min with Power Point (off campus students provide voice over Power Point)
- Projects will be eligible for an A+ by meeting the above requirements and:
 - Demonstrating modeling and simulation skills above those demonstrated in class.
 - Selection of an innovative or topical system to work on
 - Teaches something above and beyond the formal class content